The inflammatory response is an essential component of tissue repair that is controlled by the immune system and PNS. The release of signaling molecules, molecules and cytokines from immune and nerve cells, respectively, triggers the healing cascade. When tissues are damaged, a secondary injury may result in loss of tissue function leading to a high risk of harm to chronic wounds. In diabetes, susceptibility to microvascular disease due to advanced glycation end products (AGEs) and other factors, such as the elderly, diabetics, those with a compromised immune system and persons with central nervous system injury, focusing and controlling inflammation with appropriate dressings with the body’s ability to move towards healing. Evidence shows that PolyMem manages and contains the inflammatory response and dampens nociceptor response, thereby reducing inflammation in tissues surrounding the initial site of injury as well as reducing pain, bruising, swelling and secondary injury, and facilitating healing.

Introduction

Inflammation is the result of the immune system responding to local damage. Acute inflammation results in local redness, heat, swelling and pain and resolves once the cellular damage and/or infection has been removed from the area. This is a normal, healthy response to help eradicate local pathogens for re-establishing homeostasis and a prerequisite for tissue repair. Conversely, chronic inflammation is an unhealthy and persistent inflammatory response that results in an altered tissue change to tissue repair, which is a fundamental component of chronic wounds. Chronic inflammation is therefore important in reducing tissue damage and encouraging progression to healing. This body of evidence implicates the causes of chronic wounds and the pathways on wounds, describes relevant studies that are related to the term of information managing dressings in containing and controlling a potentially unhealthy inflammatory response. It also specifically describes how the PolyMem range of multifunctional polymeric dressings work so the body in wounds they reduce and counteract inflammation, thereby promoting healing.

Tips in practice

To aid in the success of our non-invasive surgical wounds, the wound visually or microscopically evaluate the dressing with a multidimensional and multifunctional polymeric dressing. This will assist in selecting the dressing. The dressing is an integral component of the body’s ability to move towards healing. Evidence shows that PolyMem manages and contains the inflammatory response and dampens nociceptor response, thereby reducing inflammation in tissues surrounding the initial site of injury as well as reducing pain, bruising, swelling and secondary injury, and facilitating healing.

Causes of inflammation

Chronic injury consists of these overlapping stages: inflammation, resolution and repair. Both stages are associated with a compromised immune system and persons with central nervous system injury (DTPI) outcomes: a 2.5 year-long quality improvement project. In: Medical Neurobology.

References

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Date</th>
<th>Title</th>
<th>Journal/Banner/Conference</th>
</tr>
</thead>
</table>

Figure 1: Image from the body to the body cell level wound care solutions connecting tissue with the vascular system (PNS) and the peripheral nervous system (PNS). The peripheral nervous system (PNS) is also critical to the body’s ability to move towards healing. Evidence shows that PolyMem manages and contains the inflammatory response and dampens nociceptor response, thereby reducing inflammation in tissues surrounding the initial site of injury as well as reducing pain, bruising, swelling and secondary injury, and facilitating healing.

The peripheral systemic (PSS) is also critical to the body’s ability to move towards healing.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Date</th>
<th>Title</th>
<th>Journal/Banner/Conference</th>
</tr>
</thead>
</table>

Tips in practice

To aid in the success of our non-invasive surgical wounds, the wound visually or microscopically evaluate the dressing with a multidimensional and multifunctional polymeric dressing. This will assist in selecting the dressing. The dressing is an integral component of the body’s ability to move towards healing. Evidence shows that PolyMem manages and contains the inflammatory response and dampens nociceptor response, thereby reducing inflammation in tissues surrounding the initial site of injury as well as reducing pain, bruising, swelling and secondary injury, and facilitating healing.

Causes of inflammation

Chronic injury consists of these overlapping stages: inflammation, resolution and repair. Both stages are associated with a compromised immune system and persons with central nervous system injury (DTPI) outcomes: a 2.5 year-long quality improvement project. In: Medical Neurobology.

References

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Date</th>
<th>Title</th>
<th>Journal/Banner/Conference</th>
</tr>
</thead>
</table>
Damage to the nervous system can also result in intrinsic dysfunction and a chronic inflammatory condition (which includes the peripheral sympathetic activity of the sympathetic nervous system). (Chiu et al., 2012). The sympathetic nervous system in response to trauma or local inflammation results in a peripheral sympathetic nervous system activity, which can negatively affect wound healing. (Chiu et al., 2012).

Inflammation and the role of dressing

Wounds have a negative impact on related quality of life and are associated with high healthcare costs. They should be assessed regularly, and the action taken at the relevant time point to prevent complications. Infection, bacterial load and systemic inflammation are known to influence the wound healing process. The use of dressings and other treatments that might influence the inflammatory cascade is important to promote healing. (Chiu et al., 2012; Kahn, 2000; Beitz et al, 2004). PolyMem use resulted in reduced pain and inflammation compared to a standard dressing (Hayden and Cole, 2003). Evidence for PolyMem's effect on inflammation.

Chronic wounds have high levels of inflammation, which can influence the wound healing process. PolyMem dressings promote healing by minimizing inflammation, thus promoting tissue re-epithelialization, collagen synthesis, and tissue remodeling. (Benskin 2016). The removal of excess fluid decreases the impact of reduced capillary density, thereby preventing secondary injury, reducing wound sensitivity to touch and manipulation. PolyMem dressings focus the inflammatory response at the primary site of injury, reducing pain and inflammation. (Hayden and Cole, 2003). Evidence for PolyMem's effect on inflammation.

PolyMem and how does it work?

Dressings are applied to the wound to combat infection, facilitate healing, and prevent tissue damage. PolyMem dressings are semi-permeable and maintain a dry, mildly moist wound environment. This environment reduces bacterial growth and promotes wound healing. (Chiu et al., 2012; Ashrafi et al., 2016). PolyMem dressings promote wound healing by reducing inflammation, pain, and bacterial load, and by accelerating the healing process. (Chiu et al., 2012; Kahn, 2000; Beitz et al, 2004). PolyMem dressings reduce pain and inflammation compared to a standard dressing (Hayden and Cole, 2003). Evidence for PolyMem's effect on pain and inflammation.

What is PolyMem and how does it work?

PolyMem is a polyurethane foam dressing consisting of four components (see Box 2 and Figure 2). It is covered with a semi-permeable backing film (which is not included in cavity dressings). (Bell and McCarthy, 2010). PolyMem dressings focus the inflammatory response at the primary site of injury, reducing pain and inflammation. (Hayden and Cole, 2003). Evidence for PolyMem's effect on pain and inflammation.

PolyMem and how does it work?

Dressings are applied to the wound to combat infection, facilitate healing, and prevent tissue damage. PolyMem dressings are semi-permeable and maintain a dry, mildly moist wound environment. This environment reduces bacterial growth and promotes wound healing. (Chiu et al., 2012; Ashrafi et al., 2016). PolyMem dressings promote wound healing by reducing inflammation, pain, and bacterial load, and by accelerating the healing process. (Chiu et al., 2012; Kahn, 2000; Beitz et al, 2004). PolyMem dressings reduce pain and inflammation compared to a standard dressing (Hayden and Cole, 2003). Evidence for PolyMem's effect on pain and inflammation.

What is PolyMem and how does it work?

PolyMem is a polyurethane foam dressing consisting of four components (see Box 2 and Figure 2). It is covered with a semi-permeable backing film (which is not included in cavity dressings). (Bell and McCarthy, 2010). PolyMem dressings focus the inflammatory response at the primary site of injury, reducing pain and inflammation. (Hayden and Cole, 2003). Evidence for PolyMem's effect on pain and inflammation.

What is PolyMem and how does it work?

PolyMem is a polyurethane foam dressing consisting of four components (see Box 2 and Figure 2). It is covered with a semi-permeable backing film (which is not included in cavity dressings). (Bell and McCarthy, 2010). PolyMem dressings focus the inflammatory response at the primary site of injury, reducing pain and inflammation. (Hayden and Cole, 2003). Evidence for PolyMem's effect on pain and inflammation.

What is PolyMem and how does it work?

PolyMem is a polyurethane foam dressing consisting of four components (see Box 2 and Figure 2). It is covered with a semi-permeable backing film (which is not included in cavity dressings). (Bell and McCarthy, 2010). PolyMem dressings focus the inflammatory response at the primary site of injury, reducing pain and inflammation. (Hayden and Cole, 2003). Evidence for PolyMem's effect on pain and inflammation.
Inflammation is the central juncture of the post-injury cascade of events. Several factors have possible responses after injury in normal healing versus a maladaptive response leading to chronicity. Immunological changes that occur in the aftermath of injury are determined by whether the wound is an epidermal, subcutaneous or muscular lesion. There is a strong interdependence of the processes and there is evidence that changes in one area may promote or inhibit the progress of another. Generally, there are two possible responses after injury: normal healing and progression to a chronic inflammatory state.

Damage to the tissue results in release of chemical mediators which attract immune cells to the site of injury. This leads to a complex chain of events involving the immune system which are crucial for protection and repair. Immune system dysfunction results in a chronic low-level, spread, timing and time course – are central factors in the development of inflammation and associated swelling – including their role in the progression of the inflammatory response.

Progression to a chronic inflammatory state is the critical juncture for the joint forces leading to the creation of an inflammatory cascade, leading to downstream events. The evolution of the inflammatory cascade proceeds in an orderly and logical fashion as a result of specific mechanisms and pathways, such as the involvement of various cells and mediators, the role of adaptive immunity and the role of innate immunity. The cascade progresses through a series of events, each of which is initiated by specific signals. The cascade is initiated by the release of proinflammatory cytokines and chemokines, which in turn activate other cells and molecules. These cells and molecules in turn release additional cytokines and chemokines, amplifying the inflammatory response.

Figure 2: Progression to chronic inflammation.

- **Juncture for inflammatory cascade:**
 - Leading to a spread of inflammation and associated swelling.
 - Inflammation and associated swelling – including their role in the progression of the inflammatory response.

Inflammation and the role of dressings

PolyMem (Gouin et al, 2011) shows promise in the management of acute and chronic wounds. The use of PolyMem dressing significantly reduces post-surgical pain scores and lower increases in skin temperature compared to dressings, wound irrigation and even antihypertensive medications (Bakken et al, 2004; Beitz et al, 2004; Weissman et al, 2013). In addition, PolyMem may be suitable for use in people with neuromuscular conditions, diabetes, or profound chronic hypotension resulting from chronic hypovolemia, such as in the lower limbs of paraplegic or quadriplegic patients, in burns, and in situations where the continuous wound cleansing system provided by the PolyMem dressing is top priority for many patients (Bakken et al, 2004). Factors that contribute to its success include its ability to reduce post-operative pain, wound exudate, wound volumes and bacterial load and may prevent skin temperature elevation and infection.

Evidence for PolyMem

Evidence from laboratory and clinical studies demonstrates that PolyMem dressing (Gouin et al, 2011) reduces pain, bleeding, swelling and oedema, as well as improves health-related quality of life (Ashrafi et al, 2016). Therefore, PolyMem dressing should be considered a stand-alone treatment. PolyMem dressing may be used for the continuous wound cleansing system provided by the PolyMem dressing.

What is PolyMem and how does it work?

PolyMem dressing is a multifunctional wound dressing, consisting of four components: (1) a superabsorbent starch, (2) a wound cleanser, (3) a moisturiser, and (4) a semi-permeable backing film. The superabsorbent starch is made from plants, particularly tapioca and sugar beet. The wound cleanser is a solution of hydrogen peroxide and sodium bicarbonate. The moisturiser is a solution of glycerine. The semi-permeable backing film is made from polyethylene and is used to provide a barrier between the wound and the external environment. PolyMem dressing is applied to the wound and left in place for several hours. The dressing is changed as needed. PolyMem dressing significantly reduces pain, bleeding, swelling and oedema, as well as improves health-related quality of life. Treatment of a wound with PolyMem dressing results in the delivery of important benefits beyond what could have been expected. This outcome is greater than the sum of the contributions of each individual component. At one time, all of the components acted individually in the treatment of an ulcer or wound, but now, the components act in concert to create the continuous wound cleansing system provided by the PolyMem dressing.

How PolyMem tackles inflammation

PolyMem dressing has been shown to reduce inflammation. It has been shown to reduce inflammation by reducing the levels of various inflammatory mediators, including prostaglandins, cytokines, and chemokines. It has also been shown to reduce the levels of neutrophils and macrophages, which are important cells in the inflammatory response.

Indications

PolyMem dressing is a single formulation that can be used as a continuous, non-invasive wound cleansing system. It is indicated for the management of acute and chronic wounds. The dressing is applied to the wound and left in place for several hours. The dressing is changed as needed. PolyMem dressing is a safe and effective treatment for a variety of wounds, including diabetic, pressure, and venous leg ulcers. It is also effective in the management of chronic wounds, such as pressure ulcers and venous leg ulcers. PolyMem dressing is a versatile product that can be used for a variety of wound types.

How PolyMem tackles inflammation?

PolyMem dressing has been shown to reduce inflammation by reducing the levels of various inflammatory mediators, including prostaglandins, cytokines, and chemokines. It has also been shown to reduce the levels of neutrophils and macrophages, which are important cells in the inflammatory response. PolyMem dressing has been shown to reduce inflammation in tissues as deep as the skeletal muscle by decreasing prostaglandin and neutrophil activity. In addition, PolyMem dressing has been shown to reduce the levels of cytokines, chemokines, and other inflammatory mediators, which suggests that PolyMem dressing is a potent anti-inflammatory agent. PolyMem dressing has also been shown to reduce the levels of interferon-γ and tumor necrosis factor-α, which are important cytokines in the inflammatory response.

How PolyMem tackles inflammation?

PolyMem dressing has been shown to reduce inflammation by reducing the levels of various inflammatory mediators, including prostaglandins, cytokines, and chemokines. It has also been shown to reduce the levels of neutrophils and macrophages, which are important cells in the inflammatory response. PolyMem dressing has been shown to reduce inflammation in tissues as deep as the skeletal muscle by decreasing prostaglandin and neutrophil activity. In addition, PolyMem dressing has been shown to reduce the levels of cytokines, chemokines, and other inflammatory mediators, which suggests that PolyMem dressing is a potent anti-inflammatory agent. PolyMem dressing has also been shown to reduce the levels of interferon-γ and tumor necrosis factor-α, which are important cytokines in the inflammatory response.

How PolyMem tackles inflammation?

PolyMem dressing has been shown to reduce inflammation by reducing the levels of various inflammatory mediators, including prostaglandins, cytokines, and chemokines. It has also been shown to reduce the levels of neutrophils and macrophages, which are important cells in the inflammatory response. PolyMem dressing has been shown to reduce inflammation in tissues as deep as the skeletal muscle by decreasing prostaglandin and neutrophil activity. In addition, PolyMem dressing has been shown to reduce the levels of cytokines, chemokines, and other inflammatory mediators, which suggests that PolyMem dressing is a potent anti-inflammatory agent. PolyMem dressing has also been shown to reduce the levels of interferon-γ and tumor necrosis factor-α, which are important cytokines in the inflammatory response.

How PolyMem tackles inflammation?

PolyMem dressing has been shown to reduce inflammation by reducing the levels of various inflammatory mediators, including prostaglandins, cytokines, and chemokines. It has also been shown to reduce the levels of neutrophils and macrophages, which are important cells in the inflammatory response. PolyMem dressing has been shown to reduce inflammation in tissues as deep as the skeletal muscle by decreasing prostaglandin and neutrophil activity. In addition, PolyMem dressing has been shown to reduce the levels of cytokines, chemokines, and other inflammatory mediators, which suggests that PolyMem dressing is a potent anti-inflammatory agent. PolyMem dressing has also been shown to reduce the levels of interferon-γ and tumor necrosis factor-α, which are important cytokines in the inflammatory response.
Damage to the sensitive tissue can result in immune dysfunction and chronic inflammation which, if untreated, can lead to chronic wounds. Chronic wounds can be complex to treat and are associated with high healthcare costs (Baranoski et al. 2010). Patients’ pain should be assessed on presentation and the use of adhesive products, dried-out dressings or dressings that cause secondary cell death and tissue damage, generally to the high risk of inflammation, inadequate wound treatment or wound dressing changes leading to discomfort and pain. The increased risk of infection and damage cells and tissues in the injury spiral described in Figure 2, where inflammation occurs. Nociceptors are located in the dermis and respond to pain, where inflammation is high. The identification of nociceptors is crucial for understanding pain and inflammation and developing effective pain management strategies. The evidence for PolyMem® is supported by human and animal studies (Kahn, 2000; Hayden and Cole, 2003). PolyMem manages and contains the inflammatory response and reduces pain and trauma to the wound bed.

Box 2. Some primary roles of the components within PolyMem®

- **Wound dressings**: Reduces or eases inflammation disrupting changes in the pain-sensitising nervous system and the ankylosed nociceptors that are responsible for pain. PolyMem® dressing reduces inflammation and pain by reducing the number of nociceptors that are sensitive to pain. The evidence for PolyMem® is supported by human and animal studies (Kahn, 2000; Hayden and Cole, 2003). PolyMem® manages and contains the inflammatory response and reduces pain and trauma to the wound bed. PolyMem® dressing reduces inflammation and pain by reducing the number of nociceptors that are sensitive to pain. The evidence for PolyMem® is supported by human and animal studies (Kahn, 2000; Hayden and Cole, 2003). PolyMem® manages and contains the inflammatory response and reduces pain and trauma to the wound bed. PolyMem® dressing reduces inflammation and pain by reducing the number of nociceptors that are sensitive to pain. The evidence for PolyMem® is supported by human and animal studies (Kahn, 2000; Hayden and Cole, 2003). PolyMem® manages and contains the inflammatory response and reduces pain and trauma to the wound bed.
The inflammatory process is an essential component of tissue repair that is controlled by the immune system and PNS. The release of signalling molecules, molecules, and neuropeptides by immune and nerve cells, respectively, triggers the healing cascade. During the early stages of inflammation, a secondary injury may result in loss of tissue function leading to a high risk of hard-to-heal chronic wounds. In individuals with susceptible tissue repair responses such as the elderly, diabetic, those with a compromised immune system and persons with central nervous system injury, focusing and controlling inflammation with appropriate dressings allows the body’s ability to move towards healing. Evidence shows that PolyMem® reduce secondary injury response towards progression to closure. This is a primary feature in the unique inflammatory injury (Figure 2) and helping shift the injury response by promoting healing. The inflammatory process is an essential component of tissue repair that is controlled by the immune system and PNS. The release of signalling molecules, molecules, and neuropeptides by immune and nerve cells, respectively, triggers the healing cascade. During the early stages of inflammation, a secondary injury may result in loss of tissue function leading to a high risk of hard-to-heal chronic wounds. In individuals with susceptible tissue repair responses such as the elderly, diabetic, those with a compromised immune system and persons with central nervous system injury, focusing and controlling inflammation with appropriate dressings allows the body’s ability to move towards healing.

Introduction

Inflammation is the result of the immune systems response to local damage. Acute inflammation results in local redness, heat, swelling and pain to ensure the collagen fibers and dead cells are removed from the area. This is a normal, healthy response to rebuild new functional tissue. However, chronic inflammatory responses occur as a result of a failed response to re-establishing homeostasis and a prerequisite for tissue repair. Conversely, chronic inflammation is an unhealthy and persistent inflammatory response that results in an undamaged change in tissue cellular composition and delayed healing. The early detection and treatment of excessive inflammatory wounds in individuals susceptible to uncontrolled or chronic inflammation is therefore important in reducing tissue damage and encouraging progression to healing. This Model explicitly states the causes of inflammatory response to exogenous cell death or tissue injury that is released, they also contribute to redness (erythema), swelling, increased temperature, and pain. PolyMem® reduce secondary injury response to the inflammatory response through the rapid release of signalling molecules called cytokines.

Cytokine release

Inflammation involves the release of cytokines that then trigger the healing cascade, containing injury and repairing tissues. When this process is maladaptive, a potentially unhealthy inflammatory response. It also specifically describes the PolyMem® range of multifunctional polymeric dressings work and also they reduce in injury and counteract, therefore promoting healing.

Tip in practice

It is recommended to read the enclosed information on diminishing pain, swelling and inflammation with appropriate dressings aid’s the body’s ability to move towards healing. Evidence shows that PolyMem® reduce secondary injury response towards progression to closure. This is a primary feature in the unique inflammatory injury (Figure 2) and helping shift the injury response by promoting healing. The inflammatory process is an essential component of tissue repair that is controlled by the immune system and PNS. The release of signalling molecules, molecules, and neuropeptides by immune and nerve cells, respectively, triggers the healing cascade. During the early stages of inflammation, a secondary injury may result in loss of tissue function leading to a high risk of hard-to-heal chronic wounds. In individuals with susceptible tissue repair responses such as the elderly, diabetic, those with a compromised immune system and persons with central nervous system injury, focusing and controlling inflammation with appropriate dressings allows the body’s ability to move towards healing. Evidence shows that PolyMem® reduce secondary injury response towards progression to closure. This is a primary feature in the unique inflammatory injury (Figure 2) and helping shift the injury response by promoting healing.

References

Box 1. Role of neuropeptides in inflammation (Chéret et al, 2013)

Cytokine

Cell death

Cell-level

Body-level

Immediate and critical phase of tissue repair and healing (Gefen, 2008). The inflammatory response to exogenous cell death or tissue injury that is released, they also contribute to redness (erythema), swelling, increased temperature, and pain. PolyMem® reduce secondary injury response to the inflammatory response through the rapid release of signalling molecules called cytokines.

Inflammation is the result of the immune systems response to local damage. Acute inflammation results in local redness, heat, swelling and pain to ensure the collagen fibers and dead cells are removed from the area. This is a normal, healthy response to rebuild new functional tissue. However, chronic inflammatory responses occur as a result of a failed response to re-establishing homeostasis and a prerequisite for tissue repair. Conversely, chronic inflammation is an unhealthy and persistent inflammatory response that results in an undamaged change in tissue cellular composition and delayed healing. The early detection and treatment of excessive inflammatory wounds in individuals susceptible to uncontrolled or chronic inflammation is therefore important in reducing tissue damage and encouraging progression to healing. This Model explicitly states the causes of inflammatory response to exogenous cell death or tissue injury that is released, they also contribute to redness (erythema), swelling, increased temperature, and pain. PolyMem® reduce secondary injury response to the inflammatory response through the rapid release of signalling molecules called cytokines.

Inflammation involves the release of cytokines that then trigger the healing cascade, containing injury and repairing tissues. When this process is maladaptive, a potentially unhealthy inflammatory response. It also specifically describes the PolyMem® range of multifunctional polymeric dressings work and also they reduce in injury and counteract, therefore promoting healing.
The inflammatory process is an essential component of tissue repair that is controlled by the immune system and PNS. The release of signaling molecules, cytokines, and neuromediators from immune and nerve cells, respectively, triggers the inflammatory response via release of neuropeptides. While allowing uncontrolled inflammation and promoting healing, conditions that potentially cause additional cell death, and so on and so forth.

Tips in Practice

Box 1. Role of neuropeptides in inflammation (Chéret et al, 2013)

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Release</th>
<th>Neuropeptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaky vessel</td>
<td>Body-level</td>
<td>Swelling</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>Local vasodilatation</td>
<td>Local analgesia</td>
</tr>
<tr>
<td>Pathological</td>
<td>Local swelling and leakage</td>
<td>Inflammation</td>
</tr>
<tr>
<td>Exudative</td>
<td>Promotion of fibrin deposition</td>
<td>Promotion of fibrin deposition</td>
</tr>
<tr>
<td>Necrotic</td>
<td>Promotion of fibrin deposition</td>
<td>Promotion of fibrin deposition</td>
</tr>
</tbody>
</table>

Summary

Introduction

Inflammation is the result of the immune systems response to local damage. Acute inflammation results in local redness, heat, swelling and pain and resolves once the causative cell damage and pathogens have been removed from the area. This is a normal healthy response to remove any re-adhesive cells, tissue, bacteria, or other pathogens and prevent an infection from occurring.

The inflammatory process causes significant disruption to the cell membrane, leading to its breakdown and releasing inflammatory mediators. These inflammatory mediators then act on the surrounding receptors, leading to the production of more inflammatory mediators. The inflammatory mediators then act on other cells, leading to the production of more inflammatory mediators. This process continues until the inflammatory mediators are removed from the area.

Figure 1

The peripheral nervous system (PNS) is also important in the feeling of pressure (Figure 1). The pain caused by pressure on the body is due to the sensory nerve fibers carrying pain signals to the brain. The brain then processes these signals to determine the cause of the pain.

Causas of Inflammation

Chronic inflammation is a long-term inflammatory process that is associated with a variety of diseases, including autoimmune diseases, infections, and cancers. Chronic inflammation can also lead to the development of cancer, and it is associated with the development of cancer. Chronic inflammation is a long-term inflammatory process that is associated with a variety of diseases, including autoimmune diseases, infections, and cancers. Chronic inflammation can also lead to the development of cancer, and it is associated with the development of cancer.